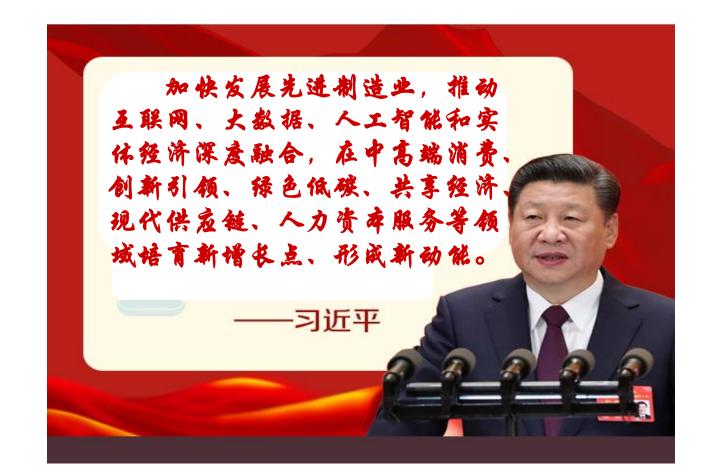
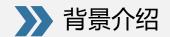


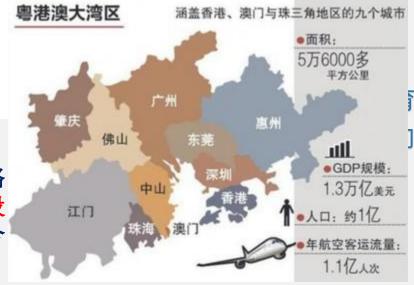
广东STEM教育:现状及思考

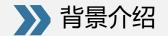



01

广东省协同中心创立背景

十九大报告为STEM教育发展指明了方向





美国纽约湾区 New York City Bay Area 日本东京湾区 美国旧金山湾区 Tokyo Bay Area San Francisco Bay Area 粤港澳大湾区 Guangdong-Hong Kong-Macau Greater Bay Area

粤港澳大湾区建设已经写入十九大报告和政府工作报告,提升到国家发展战略层面。

粤港澳大湾区建设需要能支撑先进制造业、战略新兴产业的拔尖创新人才,需要从基础教育阶段就开始培养创新意识和科学素养,呼唤普职融合的STEM教育。

- 2015年9月,教育部《关于"十三五"期间全面深入推进教育信息化工作的指导意见》
- 2016年2月,国务院办公厅《全民科学素质行动计划纲要实施方案(2016—2020年)》
- 2016年6月,教育部《教育信息化"十三五"规划》
- 2017年2月,教育部《全日制义务教育小学科学课程标准》
- 2017年7月,国务院《新一代人工智能发展规划》
- 2018年5月,中国教育科学研究院《STEM教师能力等级标准》(试行)
- 2018年6月,中国留学生赴美部分STEM专业F-1签证受限

- · 2019年2月,中共中央、国务院《中国教育 现代化2035》
- 2019年2月,中共中央、国务院办公厅《加快推进教育现代化实施方案(2018-2022年)》

中国STEM 教育2029 行动计划

服务决策

- 咨询报告
- 调研报告
- 政策内参
- 行业白皮书
- 研究报告
- 专著
- 系列文章

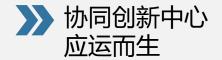
干校联盟

- 重点课题项目校100个,
- 培育、种子学校900个
- 参与学校数10000+
- 形成课程资源库
- 形成评价案例库
- 形成教学方案库

全球影响力

- 年度峰会汇聚各部委领导,
 国内外专家,媒体,参会
 人数1000+
- 培训百名种子培训师,辐射万余名STEM教师
- 学生活动覆盖人数50万+

中国STEM教育2029行动计划-2018年工作



种子学校300所 /1000 种子教师76 名/1000

STEM教育活动 专家委员会 STEM课程与教学 专家委员会 STEM教师专业发展 专家委员会 STEM教育评价 专家委员会

中国STEM教育2029行动计划-2019年工作计划

2018年初,广东教育研究院成立中国教科院首批生 STEM教育协同创新中心之一,全国11家

协同中心前期工作

遴选种子学校

38所/300所

遴选领航学校

13所/76所

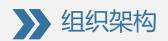
遴选种子教师

10/76位


>> 前期工作

申报中国教科院STEM研究课题27项/184,均经专家评审,全部通过开题

申报广东省STEM研究课题164项,均经省级专家评审,通过103 项


工作目标

- ✓ 要始终把STEM教育作为创新人才培养的重要战略
- ✓ 要始终把课程建设作为发展STEM教育 的核心
- ✓ 要始终把STEM教育的教师培养作为

首要任务

- ✓ 要始终把协同共享作为发展STEM教育 的基本路径
- 协同、创新、合作、包容、开放响应国家创新驱动发展战略

统筹、督导

资源支持、 协作转化

政策、方针

省教

育厅

省教 研院

创新 协同 中心

实验 学校 协作 单位 研修实践、 成果迁移

教研员 与骨干 教师

院校 支持

专业指导、 试验跟进 省专家 团队

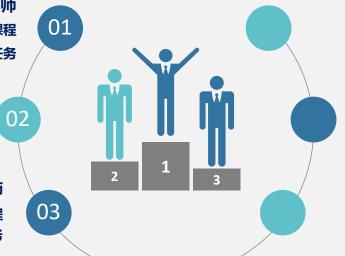
高职

实践基地、 技术支持

广东省创新协同中心创新点

普职融合

校内专业教师 开发普职融合的STEM课程


承担相关专业课程的授课任务

校内实训指导教师

开发STEM教育的实验实训课程 承担STEM实验实训课程的授课任务

企业兼职教师

开发在企业实施的STEM课程 承担企业实施的STEM课程的授课任务

广东省创新协同中心创新点

协同创新:配合中国教科院完成研究项目

课程:完成以工程为载体的STEM教学指导纲要

精选STEM教育优秀案例

评价: 开展课堂评价研究

队伍: 领航学校、种子学校、种子教师

协同创新:与香港STEM教育联盟等共同构建粤港澳大湾区共同体

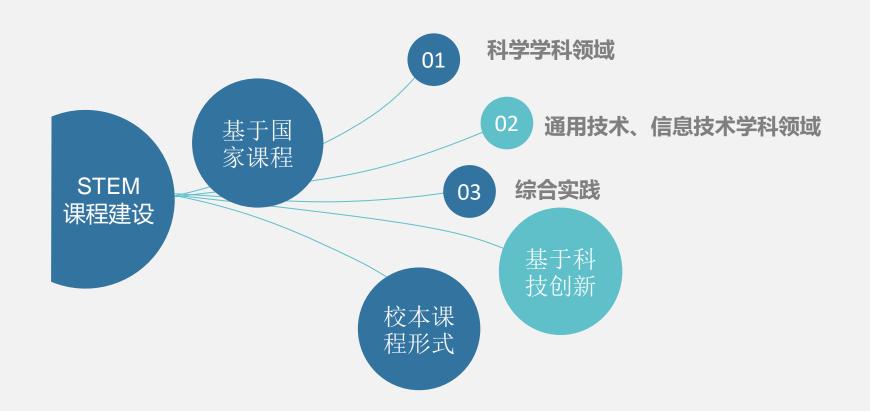
>> 现状与问题

重硬件建设, 轻资源开发

资源建设碎片化、学科化

没有真问题,就没有真调查探究,也没有指向问题解决和满足需求的设计制作,产品仅仅成为展品

STEM综合程度高、实践领域广、活动生成强、学习效果物化 基于现实情境的"真问题"、进行项目的跨学科设计以及强调创意物化


好的STEM课程的六个特点

- 1.STEM课程侧重于现实世界的问题和复杂的问题。
- 2.STEM课程由工程设计过程贯穿.
- 3.使学生沉浸在亲身探究和开放式探索中。

好的STEM课程的六个特点

- · 4.STEM课程让学生参与富有成效的团队合作。
- 5.科学课程适用严格的数学和科学内容,你的学生正在 学习。在你的STEM课程中,你应该有目的地连接和整 合数学和科学课程的内容。
- 6.STEM课程允许多个正确的答案,并将失败重组为学习的必要部分。

以项目式学习为课程实施方式

基于项目(问题,课题、任务,PBL)的小组合作探究学习。课题可使学生在学科知识与其应用之间建立即时联系。在课题探究和问题解决的过程中,让知识学习实现批判性思维与社会协作的连接。

注重教学实施

●课时的安排

长短适宜、微课、两节课连排,集中与分散使用相结合

●教学方式:突出学生为主体,自主、合作、探究 调查研究与访问、实验研究与观察、技术设计与制作、 社会参与与服务、文献收集与分析、成果交流与表达

学习方式与学习效率

National
Training
Laboratory,
Betel,
Maine

强化课程评价一先于实施,并嵌入过程

实施前将评价标准、要求公布,要求学生 有相应的过程记录、成果整理和即时反思,促 进学生的成果意识和反思意识

以目标为导向的评价

(一) 过程评价

过程具体到个人, 要落实到个人的发展

(二) 实作评价(表现性评价,依据学生在活动过程的行为表现来进行评价)

设计活动方案、分析分解主题、提炼信息、答辩、点评

(三) 教学和评价工具的设计(任务单、资料卡、记录表、

流程图、知识树、评价卡)

STEM项目评价和传统教学评价

比较STEM项目学习和传统教学的评价方法

STEM项目学习

- (1) 合作性/小组项目
- (2) 文章
- (3) 展示、项目展示或 者必要技能的评估/
- (4) 档案袋
- (5) 正式观察
- (6)展示
- (7) 自我评价
- (8) 仿真模拟
- (9) 完成项目后的口头检查

- (1) 真实性
- (2)案例研究
- (3) 观察后的口头提问
- (4) 检查(闭卷)
- (5) 实践项目——小型的,但与更大的项目相关联
- (6)直接观察

传统教学

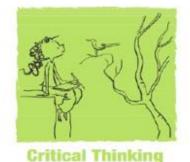
- (1) 检查考试
- (2) 多项选择测试
- (3) 工作任务单
- (4) 简答题

》 聚焦关键能力/核心素养/STEM素养的 STEM教学: PBL项目式学习

所谓 STEM 素养,是指学生能够在真实的生活情境中发现问题和需 求,确认、澄清背景和条件,应用科学知识和原理提出假设,通过数学 模型建构及数据分析讲行验证,综合选择和应用工具和材料设计制作产 品来解决问题,在解决问题的过程中沟通协作、批判思考、物化表达和 交流分享,并在此过程增强探究精神和动手实践能力,学习科学研究的 基本方法,掌握常见工具的使用和材料的选取,学会创意化作品的设计 与制作,使学生养成正确的价值体认、积极的责任担当,形成有效的问 题解决、个性化创意物化的意识和能力**。**

21世纪技能

Communication


Sharing thoughts, questions, ideas, and solutions

Collaboration

Working together to reach a goal — putting talent, expertise, and smarts to work

4C能力包括什么?

Looking at problems in a new way, linking learning across subjects & disciplines

Creativity
Trying new approaches
to get things done equals
innovation & invention

沟通交流

分享思路、问题、点子 以及解决方案

合作协作

协作达成目标,天赋、 经验、聪明三者合一

批判性思维

用新思路看待问题,完 成单学科与跨学科学习

创造创新

尝试新方法去做事, 这就是在创新和发明

培养认知能力

- 独立思考
- 逻辑推理
- 信息加工
- 学会学习
- 语言表达
- 文字写作
- 养成终身学习的意识和能力。

培养合作能力

- 自我管理
- 学会与他人合作,
- 学会过集体生活,
- 学会处理好个人与 社会的关系
- 遵守、履行道德准则和 行为规范

培养创新能力

- 好奇心
- 想象力
- 创新思维
- 创新人格
- 勇于探索
- 大胆尝试
- 创新创造

培养职业能力

- 适应社会需求
- 树立爱岗敬业
- 精益求精
- 知行合一
- 动手实践
- 解决实际问题。

四个能力与STEM教育

- · 认知能力: 问题解决和创造创新是最高级的认知能力
- · 创新能力: 创意物化
- · 职业能力: 职业体验获得价值体认
- · 合作能力: 在小组合作中培养学生的自主参与 意识与合作沟通能力

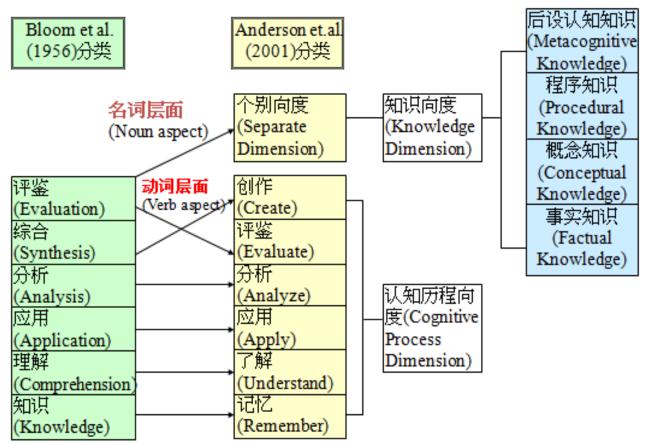
责任担当,实践创新

以项目式学习为课程实施方式

基于项目(问题,课题、任务,PBL)的小组合作探究学习。课题可使学生在学科知识与其应用之间建立即时联系。在课题探究和问题解决的过程中,让知识学习实现批判性思维与社会协作的连接。

在活动中学,在做中学,在游戏中学

知识+情境+实践=素养。一切知识, 惟有成为学生探究与实践对象的时候,其 学习过程才有可能成为素养发展过程。密 码在于情境。惟有将知识植根于情境,才 能找到知识学习的意义,促进素养发展。 素养一经形成,又能超越具体情境的限制 讲行迁移。


项目式学习 (PBL)

学习内容:基于主题的项目(问题,课题、任务)

价值指向: 使学生在学科知识与其应用之间建立即时联系。

学习方式:小组合作在课题探究 和问题解决的过程中,让知识学习 实现批判性思维与社会协作的连接。

高级能力

两个倡导

- * 倡导深度探究 (deep inquiry) : 让探究成为高级思维 (综合、运用、批判、创造) 形成的过程。
- * 倡导协作建构 (collaborative construction): 让问题解决和设计制作成为社会交往与项目协作, 即集体创造知识和解决问题的过程。

>> 建立以工程设计为方向

调查:明确需求、确定项目

设计:形成方案,绘制设计图

创造:设计制作、创意创新

评估:用户反馈体验、优化改进

STEM PBL

科学探究

报结果。

提出问题、作出假设、制订计划、 搜集证据、处理信息、得出结论、 表达交流、反思评价

工程 设计

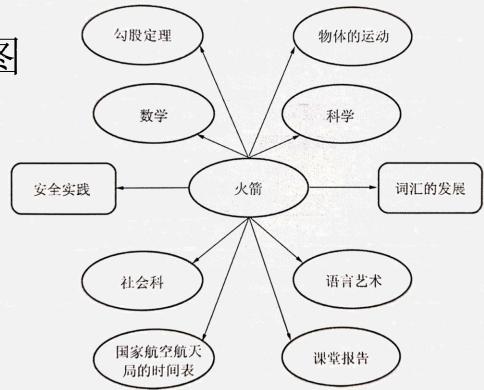
究、形成概念、分析观点、制 作原型、测试改进、沟通反思

部分STEM PBL

- 推拉力学实验-改造推拉玩具
- 光影现象观察-设计与制作皮影
- 简单电路实验-设计与制作亮灯/音牙
- 垃圾分类探究—设计与制作智能垃圾桶
- 养蚕实验 设计与制作多功能的蚕"居室"
- 定滑轮实验 设计与制作办公室简易肩部打
- 杠杆实验 设计与制作创意跷跷板

半/无结构问题 模糊任务 明确标准 制约因素

- 工程:应用数学、科学和技术领域的概念来系统地解决复杂问题.....要有创造性。
- 普遍学习工程的必要性:
 - 系统地解决问题
 - 获取、创造信息
 - 应用概念(并非仅仅理解概念)
 - (Morgan, Moon & Barroso 2015)

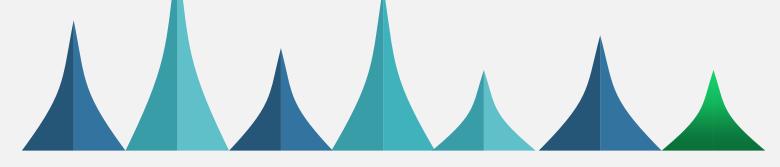

- 肌肉骨骼: 科学
- 工程: 大脑
- 技术: 手
- 数学:心脏和血液

• (Akgun 2015)

火箭主题的跨学科PBL概念图

• 绘制跨学科概念图

(Capraro & Jones 2015)


 工程设计:在明确结果要求的情况下,在 寻求解决问题方案的过程中遵循的系统方 法。

– (Morgan, Moon & Barroso 2015)

- STEM PBL的工程要素及教学启示:
 - 是否解决真实世界的问题? 问题本身是否与学生的认知、经验相关?
 - 一问题是否足够复杂?一任务是否具有制约因素、模糊性解决方案、明确结果要求?
 - 是否应用了数学、科学的概念和技术? 是否跨学科?
 - 是否讲求系统的方法? 是否遵循工程设计过程进行结构化教学?
 - 是否强调信息处理能力? 是否强调调查研究、观点分析、工程记录?
 - 是否鼓励解决问题方法的创造性? 是否强调测试改进以及结果的开放性?

工程设计过程七步骤

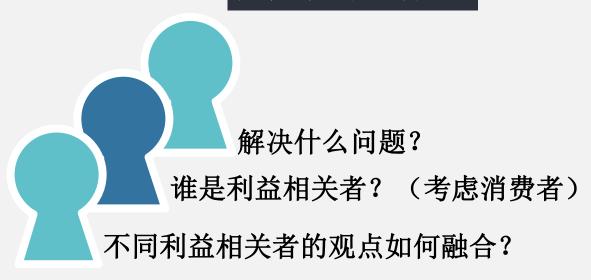
识问和约素

调查研究

形成概念

分析观点

建立原型


测试与改进

沟通 与反 思

1. 识别问题和制约因素

定义设计目标

1. 识别问题和制约因素

识别制约因素与标准

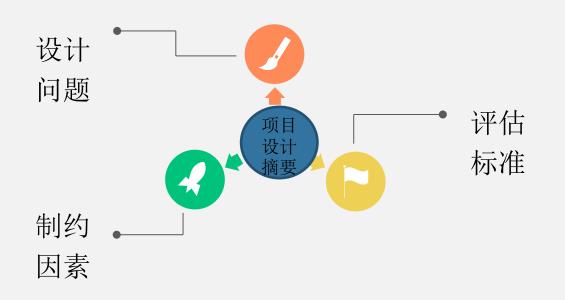
时间、资金、材料等制约成品标准(如视觉美观、节能高效)

定位问题

学生必须通过体验现实世界的各种情况来学习解决结构模糊、结构明确和无结构的问题 的技能。 结构清晰的问题 结构模糊的问题

学校

单一解决方案 要求的技能有限



真实世界

多种解决方案 要求的技能多样

撰写项目设计摘要

教师用项目设计摘要(Project design brief)向学生介绍项目。

提供评价标准

提供评价标准和制约因素

教师

定义与识别评价标准和制约因素

学生团队

设计烤面包机的评估标准和制约因素

摘要 示例

评估标准

- •对目标消费者来说,价格是可以负担的。
- 使用安全。
- 可靠性(持续烤面包而不会把面包烤焦)。
- 多功能(在光线充足的环境下和黑暗的环境下,都运作良好)。
- 可调节(宽度适合不同类型的面包/饼)。
- 经久耐用(保证正常使用一年)。
- 视觉上美观。

制约因素(基于过程和实施)

- •时间 必须在20个自然日的300个小时内完成细节的模型制图并交付生产商。
- 项目团队 必须两个人一起工作来完成项目。
- •档案 日志里必须记载所有的会议记录、草图、计算和笔记,并注明日期。

制约因素(基于商务要求)

- 生产成本与销售纯收入 必须带来至少30%的利润。
- •供应商 必须只用商定好的供应商。

2. 调查研究

¹¹ 总结前人工作,防止重复劳动

相关法律法规、风土人情、专业标准等

02

03 \其他利益相关者视角

环境问题, 负面影响最小化

04

对料选择(供应商、时间、价格等)

3. 形成概念(创造性)

创造性地提出尽可能多的问题解决方案 常用教学方法:头脑风暴 教学设计要点:创造轻松的氛围,鼓励一切想法, 不评价观点,记录所有方案

"思考一合作一分享"有利于一个认识在前一个认识的基础上优化。(Johnson, Johnson & Smith 1991)

4. 分析观点(批判思维)

批判地分析多种观点,选择或发展最佳方案。

在评价标准和制约因素的框架内,发展数学、科学模型,预测不同方案的执行情况。

"工程设计不是提出单一的正确答案;相反,其目标是在几个可能的答案中识别出最好的解决途径。" (Morgan, Moon & Barroso 2015)

4. 分析观点(批判思维)

- 明确的与特别的一种,明确的一种。 明确的
- 案例:自动浇花器

•可能的结果:

- 吸水装置
- •滴水装置
- 圆球装置
- 传感装置

•

5. 建立原型

构建完整的工作原型(prototype)。 考虑因素:材料、供应商、组合过程。 原型并非一定物化,可以是过程。

5. 建立原型

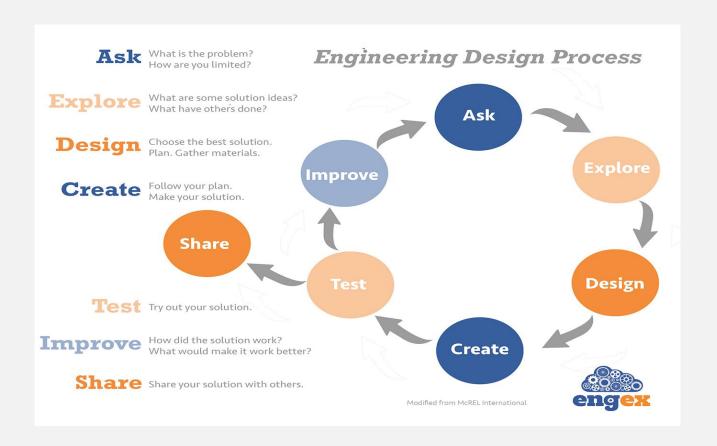
结果:物化与非物化

•小学3年级:制作通用的和个性化的健康食谱

5. 建立原型

科学实验园设计图

班级信条


6. 测试与改进

原型要在所有可能的条件下进行实验评估和测试,并做相应的改进。教学要点:做好详细的记录,包括预测、测试的条件,观察和结果;侧重偏差和每次实验中的变化因素;从不同角度拍摄原型的照片和录像,标注日期,设计者签名;记录原型是否符合设计目的、制约因素。

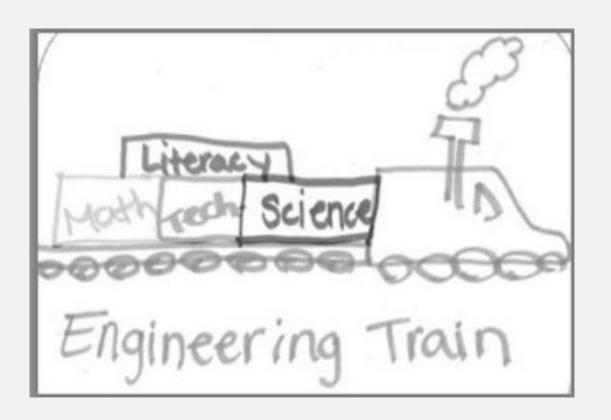
很可能回到起点。

时间和经费等制约因素影响改进程度。

6. 测试与改进

7. 沟通与反思

现代工程师的4种沟通技能:


人际沟通 (团队工作)

口头沟通(获得项目批准、经费;通俗表达和专业表达)

视觉沟通 (插图、草图、设计蓝图、图表、图形等)

书面沟通(工程日记)

(Morgan, Moon & Barroso 2015)

"STEM融合了科 学、技术、数学 和文学的各个方 面,它们都是乘 坐工程火车所必 需的。"

体现工程设计的跨学科融合举例

今年工作设想

广东省第二届STEM教育交流研讨暨粤港澳大湾区STEM教育交流

省课题开题培训

国家课题中期汇报

STEM教育项目式教学案例征集评比

第二批省课题立项

参加10月的全国第三届STEM教育大会,西安

配合中国教科院STEM中心工作

谢谢!

